
CLIQUE NUMBER AND CHROMATIC NUMBER FOR
PERMUTATION GRAPHS

ALEXANDER LEAF

1. Introduction

Let [n1, · · · , nk] be a permutation of 1, · · · , k. We can represent this permutation
as a chord diagram on the circle with the following ordering:
n1, · · · , nk, k, · · · , 1
for which nodes with equal values are vertices for the chords. Let a = ni and

b = nj . Thus, when drawing the chord diagram to have the minimum number of
crossings, we find that the chords connecting a to ni and b to nj will intersect only
when a > b and i < j or when a < b and i > j.

For any chord diagram, let the circle graph (or crossing graph) Xσ be the graph
in which each chord is represented by a vertex and there is an edge between vertices
if the two chords they represent cross.

Let the clique number ω be the size of the largest set of chords that intersects
all other chords in the set and let a clique be such a set of chords. In the crossing
graph, a clique corresponds to a complete graph and the clique number corresponds
to the number of vertices in the largest complete subgraph. In other words, the mu-
tually intersecting chord number is the size of the largest monotonically decreasing
subsequence of the permutation.

Let a valid coloring of the chord diagram be any coloring of the chords such that
no chords of the same color intersect each other. Let the chromatic number γ be
the minimum number of colors that can be used in a valid coloring. In the chord
diagram, this correspond to the chromatic number while coloring the vertices.

2. The Relationship Between Clique Number and Chromatic Number

Theorem 1. Given permutation σ = [n1, · · · , nk] of 1, · · · , k and its corresponding
chord diagram, the clique number ω is equal to the chromatic number γ.

Proof. It is clear that γ ≥ ω because if ω > γ, by the pigeonhole principle, at
least two intersecting chords would have the same color, which would not be a valid
coloring. To show that ω ≥ γ, we introduce the following greedy algorithm.

Algorithm 1. The following algorithm finds cl for a given permutation. First, find
the smallest unvisited value left in the permutation (at first 1) and mark that value
as visited. Next, find the next smallest unvisited value nj such that nj > ni and
j > i, let i = j and mark nj as visited. Repeat this process until there are no such
values left. Next, on a new line, repeat this method of finding the smallest unvisited
value and the subsequent values from the still unvisited values. This process ends
when all values are visited.

Date: July 19, 2010.

1

2 ALEXANDER LEAF

j = 0

M = [][] // the empty matrix

visited = [False, ... , False]

while visited 6= [True, ... True]

m := min k : visited[k] = False

i = 0

while m 6=∞
M[j, i] = m

visited[m] = True

m = min [k > m : σ−1(k) > σ−1(m) AND visited[k] = false]

i := i + 1

j := j + 1

Then, let the number of lines created be m. To find a maximal set of mutually
intersecting chords from this list representation: Take the last number from line m.
Then, for each preceding line i, take the largest number in the list smaller than the
number selected from line i + 1.

m = max k : M[k, 0] > 0

SET = [] // the empty array length m

SET[m] = M[m, max [k : M[m, k] > 0]]

while m > 0:

m := m - 1

n := 0

while M[m, n] < SET[m + 1]:

n := n + 1

SET[m] = M[m, n - 1]

Proof. For convenience, let the value selected from list i be li. By construction, the
values in each list are monotonically increasing in the permutation and thus none
of those chords intersect. Thus, we know that ω must be less than or equal to the
number of lines. This means that we only have to show that the recovery algorithm
always yields a set of chords and that those chords are all mutually intersecting.

First, assume that the recovery algorithm does not yield a set of chords. The
only way this is possible is if for line i, li+1 is less than all values in line i. However,
this is impossible because by construction, the first value in line i is less than all
values in lines j, j > i. Thus, the recovery algorithm will yield a set of chords.

Now, we just have to show that those chords are form a clique. By construction,
li, · · · , lω are monotonically increasing. Thus, it is sufficient to show that li comes
after li+1 in the permutation. If li is at the end of list i, then we know that it
came after li+1 in the permutation because the value from list i + 1 is greater, so
li could not end list i if li+1 came after it. If li is not at the end of list i, then
by construction, the value after it in list i is greater than li + 1. Thus, li must
come after li + 1 or else the value directly after li in list i would be less than li + 1,
which could not be true. Thus, we have proven that li comes after li + 1 in the
permutation and thus the chords formed from l1, · · · , lω form a clique. �

End of proof of Theorem 1: If we use Algorithm 1, one valid coloring would
be to color elements in the same line the same color. Thus, by coloring each line
differently, no intersecting chords would have the same color. This would mean

CLIQUE NUMBER AND CHROMATIC NUMBER FOR PERMUTATION GRAPHS 3

that ω ≥ γ. We already know that γ ≥ ω, so this means that ω = γ, which proves
the theorem. �

3. Example

Take the following permutation [6, 5, 4, 7, 1, 2, 8, 3, 9] of 1, · · · , 9. Using our
algorithm, we will start at 1, then take 2, 3 and because 4, 5, 6, 7 and 8 do not
follow 3, we will take 9. Now, starting a new line, the lowest number left is 4, and
because 5 and 6 do not come after it, we can take 7 and then 8. Nothing higher
than 8 is left, so we move to a new line. Next, we take 5, and nothing higher comes
after it, so we start a new line and take 6. Now, we have checked everything in the
permutation. We should have the following:

1, 2, 3, 9
4, 7, 8
5
6
Thus, the minimum coloring is 4. Using the recovery algorithm, we first take

the 6, then the 5. The 7 and 8 are greater than the 5, so we take the 4. Then, the
9 is greater than the 4, so we take the 3. Thus, we have 3, 4, 5 and 6 as our set.

4. Finding All Cliques

It is clear that any maximally intersecting chords must contain one element from
each line or else, by the pigeonhole principle, two chords would not intersect, or we
would have less than the maximum number of chords. This leads to the following
recursive algorithm to find all maximal sets of mutually intersecting chords:

Algorithm 2. We begin with the line format from Algorithm 1. We begin on the
last line (as with the recovery algorithm above). However, this time, we take all
elements from the last line. We use the following recursion:

Given an element e on line i i > 1, recurse on all elements in line i − 1 such
that the elements are less than e and come after e in the permutation.

m = max [k : M[k, 0] > 0]

ST = empty // empty symbol table holding arrays

SET = [] // empty array length m

recurse(m, ∞, SET)

recurse(n, last, SET):

list = all nonzero values on line n

for all [v in list : (σ−1(v) > σ−1(last) AND last > v) OR last = ∞]

SET[n - 1] = v

if n > 1: recurse(n - 1, v, SET)

else: add SET to ST

All sets covered in the recursion are mutually intersecting chords of maximal
size.

Proof. We know from the proof of the first recoverability algorithm that we will get
at least one valid element on line i−1 given an element on line i. The proof that all
sets created will be mutually intersecting chords follows from the proof of the first

4 ALEXANDER LEAF

recoverability algorithm. Thus, we just have to prove that we will get all mutually
intersecting chords of maximal size with this algorithm. Assume that there is a set
of maximally intersecting chords that this algorithm doesn?t give us. Because all
elements on the final line are considered, there must be a first line i going backwards
such that the element selected from the line above is not considered. This would
mean that either: 1) The element on line i − 1 is larger than that from line i (e).
This implies that we can find a minimum element on line i− 1 greater than e. We
know that below this on line i−1 there is an element less than e, which means that
all of these elements come after e in the permutation, so the chord from line i and
line i− 1 would not intersect, which cannot be true. 2) The element on line i− 1 is
smaller than e but comes before it in the permutation. But this would also mean
that the chord from line i and line i− 1 would not intersect, which cannot be true.

Thus, this set would not be a set of maximally intersecting chords, and thus the
algorithm finds all maximally intersecting chords. �

5. Significance

These permutation representing chord diagrams are a special case of circle graphs.
For a general circle graph, chromatic number is not always equal to clique number.
For example, the 5-cycle can be given as a circle graph, for which a corresponding
chord diagram could have vertex ordering [1, 2, 3, 4, 2, 5, 4, 1, 5, 3]. In this case,
chromatic number would be 3, while clique number would be 2. For a general circle
graph, finding the chromatic number and maximum independent set size is hard,
while finding clique number and a maximum clique and maximum independent set
has worst-case O(N3) time. (For permutation graphs, this process has worst-case
O(N2) time.) For this general algorithm, see Gavril 1973 (Algorithms for a Max-
imum Clique and a Maximum Independent Set of a Circle Graph). One possible
use for this algorithm is finding trivializing number for a knot pseudodiagram (see
Henrich et al. 2009 (Classical and Virtual Pseudodiagram Theory and New Bounds
on Unknotting Numbers and Genus)).

